This is a free lesson from our course in Algebra I
In this lesson, you'll learn how to determine, if a system of equations
has infinite solutions. A system of equations has infinite solutions when the lines
are parallel, i.e. they have the same slope, and they have the same yintercept.
In fact one equation is a scalar multiple of the other and hence, in effect, the
equations represent the same line! Let's look at system of two linear equations Ax + By + C = 0 and Dx + Ey + F = 0: these equations will have infinite solutions if the ratio of A/D, B/E and C/F are the same i.e. A/D = B/E = C/F. In such a case, these lines represent coincident lines, i.e. they overlap at every single point. For example, x + y = 2 and 3x
+ 3y = 6 have infinite solutions because A/D = B/E = C/F = 1/3. Another
way to look at this is: if you multiply line 1 by three you get line 2, and thus
these two lines are exactly the same line!
Winpossible's online math courses and tutorials have gained rapidly popularity since
their launch in 2008. Over 100,000 students have benefited from Winpossible's courses...
these courses in conjunction with free unlimited homework help serve as a very effective
mathtutor for our students.

All of the Winpossible math tutorials have been designed by topnotch instructors
and offer a comprehensive and rigorous math review of that topic.

We guarantee that any student who studies with Winpossible, will get a firm grasp
of the associated problemsolving techniques. Each course has our instructors providing
stepbystep solutions to a wide variety of problems, completely demystifying the
problemsolving process!

Winpossible courses have been used by students for help with homework and by homeschoolers.

Several teachers use Winpossible courses at schools as a supplement for inclass
instruction. They also use our course structure to develop course worksheets.